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INTRODUCTION

The results of the so-called energetic approach to fracture with particular attention to the issue of
energy dissipation due to crack propagation are applied to the case of a crack with cohesive zone. The
thermodynamic admissibility of subcritical crack growth (SCG) is discussed together with some
hypotheses that lead to the derivation of SCG laws. A two-phase cohesive zone model for discontinuous
crack growth is presented and its thermodynamics analyzed, followed by an example of its possible
application.
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INTRODUCTION

Subcritical crack growth (SCG), under both general and cyclic loading, is a phenomenon that has
been receiving more and more attention during the last forty years. Starting with early investigations
mainly on fatigue in metals (Refs. 1-9), current research covers a wide variety of materials, especially
those such as polymers (Refs. 9-13), and ceramics (Ref. 14), that are becoming important in the
fabrication of composites. From a theoretical standpoint, the problem is that of relating crack growth to
the load history. In this sense, fundamental understanding has been provided by the energetic approach to
fracture (Refs. 15-32), that showed (Refs. 15-19) how SCG is strictly related to the rate of dissipation in
the vicinity of the crack front.

OBJECTIVE:

TO RELATE CRACK GROWTH

TO THE LOAD HISTORY

A CRACK GROWTH LAW

AND/OR CRITERION IS NEEDED
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APPROACHES TO THE PROBLEM

Several theoretical studies in the continuum thermedynamics of fracture have shown that independently

of the global or local (around the crack tip) constitutive assumptions, a sharp crack with no cohesive zone
is constrained to evolve according to the Griffith criterion (Ref. 20). Unfortunately, SCG cannot be
described in terms of the Griffith criterion. In the case of SCG, mainly in fatigue, a number of .grow_
laws are available, although the great majority of them are based on phenomenological observation only.

• GRIFFITH CRITERION (1920)

i>0 IF G _ GcR

ORIGINALLY FORMULATED USING AN ENERGY

BALANCE APPROACH (FIRST LAW) FOR BRITTLE

SYSTEMS.

FATIGUE GROWTH LAWS

1950's)

(SINCE EARLY

CYCLIC LOADING

SUBCRITICAL CONDITIONS

(GRIFFITH CRITERION DOES NOT APPLY)

MOST OF THEM ARE ONLY

PHENOMENOLOGICALLY BASED
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CURRENT STATE OF RESEARCH

Modemcontinuum thermodynamics sees crack propagation like an internal dissipation mechanism. In
this sense the propagation of fracture can be described by the evolution of a set of convenient kinematic

state variables, e.g., crack length, whose driving force can be computed directly from the total free energy
of the body. The application of the thermodynamics with ISV's is immediate. One of the important
outcomes of such an approach is the interpretation of a moving crack tip as a moving heat source and the
sut_sequent Oetermination of the corresponding near crack tip temperature field.

ENERGETIC APPROACH AS A UNIFIED
APPROACH:

FRACTURE STUDIED WITHIN THE

FRAMEWORK OF CONTINUUM

THERMODYNAMICS

CRACK SURFACE CONSIDERED AN

INTERNAL STATE VARIABLE;

CRACK PROPAGATION IS AN

INTERNAL DISSIPATION MECHANISM.
IT CAN BE INCLUDED IN

CONSTITUTIVE THEORIES WITH I.S.V.

FORM OF TEMPERATURE

SINGULARITY AT THE TIP OF A
RUNNING CRACK
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IMPORTANT CONTRIBUTIONS

The present research effort employs many of the results of the modern thermodynamics approach to
fracture. We therefore list some of the most important contributions of this approach.

THERMODYNAMIC APPROACH
TO FRACTURE

GRIFFITH (1920): CRACK GROWTH CRITERION

USING THE FIRST LAW OF THERMODYNAMICS

CHEREPANOV, G.A. (1967): APPLICATION OF

CONTINUUM MECHANICS & CONSIDERATIONS

BASED ON THE SECOND LAW

RICE, J.R. (1968): PATH INDEPENDENT

INTEGRALS IN ELASTICITY; ENERGY RELEASE
RATE AS CRACK LENGTH CONJUGATE FORCE

GURTIN (1979): APPLICATION OF RATIONAL

THERMODYNAMICS TO A THERMOELASTIC
SYSTEM WITH A SHARP CRACK

NGUYEN (1980-1985): GLOBAL

THERMODYNAMIC AND DISSIPATION
ANALYSIS TO FRACTLq_

GENERALIZATION OF THE GRIFFITH CRITERION

DERIVED BY A DISSIPATION POTENTIAL

THERMOMECHANICAL SINGULARITY ANALYSIS
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MAJOR PROBLEMS WITH CURRENT METHODS

The thermodynamic approach to fracture, in the absence of a cohesive zone, derives the Griffith
criterion as the only possible consequence of the second law. This result is fatigue since fatigue is an
example of SCG. Another problem in the analysis of cracks with no C.Z. is the loss of weaving of the
fracture parameter G for almost all material behaviors except the thermoelastic one, thus including special
behaviors like that of a process zone around a sharp crack.

SOME RESEARCHERS HAVE DERIVED

SUBCRITICAL CRACK PROPAGATION LAWS

FROM THE FIRST LAW ALONE:

THERMODYNAMIC ADMISSIBILITY IS

DISREGARDED.

WHEN THE SECOND LAW IS CONSIDERED

SUBCRITICAL CRACK PROPAGATION HAS

BEEN SHO_ TO BE THERMODYNAMICALLY

INADMISSIBLE

FOR THE RUNNING CRACK PROBLEM,

SINGULARITY ANALYSES SHOW THAT G IS

MEANINGLESS FOR PLASTICITY AND

VISCOPLASTICITY AND FOR CERTAIN

VISCOELASTIC MODELS

MODELS THAT INCLUDE PROCESS ZONES

AROUND SHARP CRACKS DO NOT

NECESSARILY REMOVE THE

THERMOMECHANICAL SINGULARITY AT THE

TIP, NOR SOLVE THE ABOVE PROBLEMS.

tf_
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APPROACH USED IN THIS RESEARCH

The present research effort introduces a cohesive zone into a continuum mechanics model for SCG in
order to allow for a thermodynamically consistent description of the problem. After postulating the
presence of a C.Z. ahead of the crack tip, the circumstances under which SCG is thermodynamically
admissible will be discussed. The assumption leading to the derivation of the traditional form of fatigue

growth laws is also discussed and a similar form for discontinuous crack growth laws will be obtained.

CONTINUUM THERMODYNAMIC

FRAMEWORK

- CLASSICAL FIELD THEORY CAN BE

USED INSTEAD OF NON-LOCAL

MODELS

COHESIVE ZONE

- ALL THERMOMECHANICAL

SINGULARITIES ARE REMOVED

- CRACK TIP HAS A FINITE SIZE

SUBCRITICAL CONDITIONS

m THERMODYNAMICALLY ADMISS_LE

UNIFIED APPROACH TO STUDY

FATIGUE AND DISCONTINUOUS CRACK

PROPAGATION.

r,
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BASIC EQUATIONS AND DEFINITIONS

Theanalysisprosecutedis basically a global thermodynamic analysis. It consists of deriving global
thermodynamic statements for the entire structure by interpreting the pointwise governing equations over
the whole body.

POINTWISE GOVERNING EQUATIONS

p_t =o iji_q-qi,i + pr (1)

(2)

%j+py_--0 (3)

(4)

%--o_/en, T,a _)

qi=qi(eoT, Tk,a n)

u =u(e_,T,_")

s=s(e_,T,_")

(5)
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Notethattheconstitutivebehaviorisassumedto beasgeneralaspossiblethroughtheuseof interval
state variables (at the pointwise level) together with their correspondent solution equations.

such that

Oh Oh
0i1= p -- "0 'S=---

E ij OT

(63

where h=h(Z,t) is the Helmholtz free energy:
( -

h =_u_ Ts (7)

a":_"(en, T,_") ; n,m:l,...,N (8)

qi = -kTi (9)

ALSO LET

(10)

STRONG FORM OF THE SECOND LAW

Pqmic >0 ; -q_Tizo
T 2

(11)
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In FigureI wehaveaschematicrepresentationof thesystemanalyzed.Thebodycontains a single

edge crack which teminates with a cohesive zone characterized by the points a and 13.

!

_gB..

Figure 1 - Crack with a cohesive zone

PHASE 1:
PHASE2:

÷_ED BULK POLYMER

a _

I >

Figure 2 - Two-phase cohesive zone model
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DEFINITION OF A CRACK WITH A COHESIVE ZONE

From a mathematical viewpoint a crack is represented by a line (surface) of discontinuity for the
various field variables. The cohesive zone is a portion of the crack line (surface) along which a system of

cohesive forces 6i is acting, and that is also characterized by its own opening displacement 8i. A quantity

in brackets represents the jump of that quantity across the cohesive zone. At this point it is possible to

derive global statements for the first and second law and for the dissipation equation.

c(0: _(0:0 _ ( _ P(t)}

c.z. =(£(0: a (0 _(_ p(t)}
(12)

÷

O i( _,t) = OjiV j = OjiVj

6i((,t)-[ui] ; 6i(13(t),t)=0

(13)

GLOBAL FORMS OF THE LAWS OF

THERMODYNAMICS

1_(0

d_ dA-f (o,,n&,-q,n,) cls=- f <o,6,-tqav,)de_ ou
S e(O

(14)

I_(0

df a.a+fq,n, aS--_ os f tq,>,d_O
s a(0

(15)

I_(0

fort.,7 _=f_o_r dA+fq,_,dS-f {q,lv,de
B S a(t)

(I_)

WHERE

S=_OBOC"

C*=-C-c.z.

(17)
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DEFINITION OF THE THERMODYNAMIC
QUANTITIES FOR THE C.Z.

The cohesive zone is considered a thermodynamic system with its own characteristics. In order to

discuss such characteristics and write the two laws of thermodynamics for the cohesive zone above, it is

necessary to define the C.Z. internal energy e, entrophy qL temperature ,3 and free energy V.

2yo=COnSt, O_( _a(t)

e =/e((,t), a(t)<(<_(t)
LO, _:_(o

(18)

Iq_o=COnSt,O_( _a(t)
'o=_o((,0, _(O<(<13(t)

[ o, (=p(t)

(19)

(20)

qJ =e -q_O (21)

FIRST LAW FOR THE C.Z. FROM THE GLOBAL

STATEMENT AND ABOVE DEFINITIONS

P (0 13(0

f e d_:f (oi6i-[qi]vi) d_
a(O _(t)

(22)

I_(0 _(t)

-_f e d(+ 2yfi = f (o,,i-[qi]vi)d(
dt

a(t) a(t)

(23)

LOCAL FORM

e=Oi6i-[qi]vi (24)
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DISCUSSION ABOUT SECOND LAW AS
POSTULATED BY GURTIN

Theformulationof thesecondlaw for the cohesive zone is not a trivial matter. We therefore adopt the

statement given by Gurtin in Ref. 26. We then impose a further restriction on the C.Z. behavior so as to
restrain the C.Z. to act, as a whole, like an actual dissipative system.

GLOBAL STATEMENT (COHESIVE ZONE

ALONE)

P(0

f((o+TI[qi]vi" d(zO
a(O

(25)

LOCAL STATEMENT

=_o + [qilvi >0
0

(26)

FURTHER RESTRICTIONS

f [qi] d( >Ov i

a(O

(27)

THE ABOVE EXPRESSION IS THE DISSIPATION DUE

TO THE EVOLUTION OF THE COI:IESIVE ZONE.
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DISSIPATION ANALYSIS (Being ¢xa Global..)

In order to properly discuss the dissipation associated with the C.Z. evolution, i.e., crack propagation

and C.Z. deformation, the thermodynamic force (G-R) work conjugate of the global state variable a must

be properly characterized.

BEING ot A GLOBAL INDEPENDENT STATE
VARIABLE, WE CAN WRITE:

_(Xk,O=_(Xk,_(t),O (28)

0¢_ Ot _con_.
(29)

FIRST LAW:

0(0

f(% 05i
Ot

a(O

&:

dC+(G-R)a=f [q,]vi d_"
a(O

where

I_(0 06. p(t) ae

G= ( oi--_' d{ ; R= {'_--_/(,)/c,) a_
d_

(30)

(31)

CRACK ADVANCEMENT RESISTANCE IS A

FUNCTION OF THE C.Z. THERMODYNAMIC
STATE.
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DISSIPATION ANALYSIS (Case 1)

We will now consider a special type of C.Z. evolution: crack growth with pure translation of the
cohesive zone. The above assumption is certainly restrictive, but it yields results analogous to that
obtained in the study of a crack without a cohesive zone. This leads to the following interpretation: a
running crack with no cohesive zone behaves like a crack with a cohesive zone when the C.Z. is
constrained to simply translate with the crack tip.

CASE 1: PURE TRANSLATION
BARENBLATT ASSUMPTIONS

A : _ (t) - tt (t) (32)

PURELY ELASTIC COHESIVE
ZONE

(33)

RESULTS:

#(o

(G-2y.)_ =f [q/]v i d{>0
a(0

(34)

f,(,,)

G= f a,d6 i

_(_)=o

(35)

RESULTS ANALOGOUS TO THOSE FOR THE
CASE OF A CRACK WITHOUT COHESIVE
ZONE
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DISSIPATION ANALYSIS (Case 2)

When a cohesive zone with general behavior, thus with some being of dissipation mechanism, is left to
evolve without special constraints, we see from the first and second law for the C.Z. that subcritical crack

propagation, that is tx > 0 when G < R, is an admissible phenomenon.

CASE 2: - ELASTO-PLASTIC COHESIVE ZONE

- GENERAL DEFORMATION

; --=_
a6_ ao

(36)

(3.

(38)

FIRST LAW BECOMES

f [_i]vi d(+(G-R)& = f [qi]v i d(>0
a(0 act)

WHERE

a5 / a6 i

at at at at

(39)

(40)

SUBCRITICAL CRACK GROWTH ADMISSIBLE

WHEN

_(t)

f [#i]vi d( >(R-G)&
a(0

WHEN & = 0 WE HAVE EVOLUTION OF THE C.Z.

INTERNAL STATE VARIABLES

(41)
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DISSIPATION ANALYSIS (Case 3)

In general, thermodynamics does not allow to derive evolution laws for the internal state variables,
thus for the kinematic variables that describe crack propagation and fatigue, some special assumptions can
be made that allow us to derive a crack evolution law strictly from the fast law of thermodynamics. For
some cases of slow crack propagation, the principle of the minimum entropy production can be evoked,

thus leading to a certain form of crack growth law.

CASE 3 i

w

SLOW CRACK GROWTH

DISSIPATIVE COHESIVE ZONE

(ELASTO-PLASTIC)

ASSUME PRINCIPLE OF MINIMUM ENTROPY

PRODUCTION HOLDS

_(0

f [q_lv_ d_=0
a(0

(42)

R-G

(43)

• CYCLIC LOADING

INTEGRATE OVER A CYCLE

A__ AA-AQ

2y.-G M

(44)

SIMPLIFIED FORM

AA
Ao_-

2y.-GM,=
(45)
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DISCONTINUOUS CRACK GROWTH

The analysis presented so far can be easily extended to describe discontinuous crack propagation

(DCP). With reference to Fig. 2, we present a two-phase cohesive zone model inspired by the

experimental work by Hertzberg, et al (Ref. 33). Proceeding as in the case of a single phase C.Z. model,

assuming that the principle of minimum entropy production holds, we obtain an evolution equation for the

phase separation coordinate _ that allows to study DCP.

A VERY SIMPLE 2-PHASE MODEL

(HERTZBERG, ET AL., 1979)

I_(0

_(o 05_ 0_.) d(+(G,_R,,)_+(G _RO_= f [qi]v i d(
f (% Ot Ot

,,(t) _(t)

(46)

where

P(O 05 i P(O
C_=(o,-- d_- e : fa_ d( (47)

ASSUME

_>0

&=0

; 0<G_<R_
(48)

UNDER CYCLIC LOADING

A_- AA-AQ

R_M-G_M

(49)

SIMPLIFIED

AA

R_M-G[M

(50)
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OTHER DISCONTINUOUS CRACK GROWTH MODELS

Very few models of DCP have been presented in the open literature. The ones mentioned below are
those in Refs. 12 and 34. Further study of the thermodynamics of the process is certainly needed.

J.G. WILLIAMS, 1977

• TWO PHASES

• NOT THERMODYNAMICALLY BASED

K. KADOTA & A. CHUDNOVSKY, 1992

SINGLE PHASE

BASED ON THE PREDICTION OF A
PROCESS ZONE CRACK RESISTANCE

DEGRADATION
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EXAMPLE

A very simple example of application of the DCP model presented is given. We have assumed that

G_ n = G_._aax and R_m = X where X is the phase transformation energy per unit lengths of transformed

material. The cohesive zone has been modeled as a two-phase Dugdale zone.

GEOMETRY:

- STRAIGHT CRACK
MEDIUM

IN UNBOUNDED

LOAD:

- UNIFORM TENSILE STRESS APPLIED
AT INFINITY

- CYCLIC, FROM 0 TO To
CASEI: T0=0.1MPa
CASE2: T0=0.2MPa

- PLANE STRESS

MATERIAL SYSTEM:
- PS

PROPERTIES*:

- E =2.2GPa

- acz. = 18.0MPa
- f=2.0

- X = 30.0J/m 2

*Botsis et AI, Int. J. Fract., v.33, 1987, pp.263-276.
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FIGURES 3 AND 4

In Figs. 3 and 4 we have a schematic of the geometry, load conditions and detailed view of the

cohesive zone.

• < 2oc _' !

T

T

Figure 3 - Example geometry and load conditions

J

Figure 4 - Two-phase Dugdale model
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FIGURE 5

The trend of C.Z. evolution obtained is shown in Fig. 5. It is easy to recognize the discontinuous
crack growth pattern.

5. 0003E-3

ft. O002E-3-
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0

Discontinuous Cvactc PTopaga_ion
Casel" a:O. Olrr_; To=O. IMPa

'

I I I I 1 I I I I I
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Nurr beT of Cycles

Figure 5 - C.Z. Evolution during DCP
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FIGURE 6

Figure 6 shows the trend of the growth of a only.

Discontinuous Crack Propagation
5.ootzE-3 Case/" a=O. Olm; To=O. 1MPa

'_ 5.0008E-3"

5. 0006E-3

5.0004E-3.

.0002E-3

5.0000E-3

4.9998E-3

0
I I I I I I

/0 20 30 40 50 60

Number of

I I

70 80

Cyctes

I 1

90 100

Figure 6 - Discontinuous crack propagation
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CONCLUSIONS

In this work a continuum thermodynamic analysis of a crack with a cohesive zone has been presented.

In particular, the issue of thermodynamic admissibility of subcritical crack growth has been addressed.

The theory espoused has been applied to the study of DCP and an approximated DCP law has been
obtained. An example of application of the DCP law is provided.

APPLICATION OF THE CONTINUUM

THERMODYNAMICS APPROACH TO THE

CASE OF A CRACK WITH A COHESIVE

ZONE

DISCUSSION OF THE ADMISSIBILITY OF

SUBCRITICAL CRACK GROWTH

SUBCRITICAL GROWTH LAWS OBTAINED

USING THE DISSIPATION EQUATION FOR

FATIGUE AND DISCONTINUOUS CRACK

PROPAGATION

SIMPLE EXAMPLE OF APPLICATION OF

THE DISCONTINUOUS CRACK GROWTH

LAW
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FUTURE WORK

Further study is certainly necessary, especially toward a better characterization of the constitutive
equations for the cohesive zone. Also necessary is the coupling of the presented thermodynamic analysis
with elements of the kinetic theory of fracture in order to obtain more general crack advancement laws. A
more accurate analysis is needed for the study of DCP together with a stability analysis. Possible

applications of the theory include the study of delamination in laminated composites, R-toughening in
ceramics and problems of matrix-fiber interface degradation in fiber reinforced composites.

OBTAIN MORE REALISTIC C.Z.

CONSTITUTIVE EQUATIONS

STABILITY ANALYSIS OF THE CRACK

PROPAGATION EVENT DURING

DISCONTINUOUS CRACK GROWTH AND

TRANSITION FROM D.C.P. TO STANDARD

(SUBCRITICAL) CRACK GROWTH

COMPARISON AND COUPLING OF THE

PRESENT THEORY WITH THE LATEST

RESULTS OF THE KINETIC THEORY OF

FRACTURE (SUBCRITICAL CRACK GROWTH

IN QUASI-PERFECTLY BRITTLE SYSTEMS)

POSSIBLE APPLICATIONS:

• FRACTURE OF POLYMERS
• DELAMINATION IN LAMINATED

COMPOSITES
• FRACTURE OF FIBER-MATRIX

INTERFACES IN MMC
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